
i • 

Best 
Available 

Copy 

., 



r 

AD-An08 8^8 

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSORS 

CARNEGIE-MELLON UNIVERSITY 

PREPARED FOR 

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY 

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 

JANUARY 1975 

DISTRIBUTED BY: 

\m\ 
National Technical Information Sr vice 
U. S. DEPARTMENT OF COKMERCE 

■ ■ ■ ■   -- ■        ■ -        ._ 





•n 

SOME   ISSUES  IN PROGRAMMING MULTI-MINI-PROCESSORS 

A.  Newell and G.  Robertson 
January,   1975 

Department  of Computer  Science 
Carnegie-Mellon University 
Pittsburgh,   Pennsylvania 

This work uas supported by the Advanced Research Projects 
Agency of th? Office of the Secretary of Deferse (FA4G20-7B-C-8107) 
and is monitored by Air ^orce Office of Scientiric Research. Authors' 
address: Department of Computer Science, Carnegie-Mellon University, 
Pittsburgh,   Pa.   15213. 



~— 

SOME ISSUES IN PROGRAmiNG nULTf-MINI-PROCESSORS* 

A. Neue I I and G. Robertson 

INTRODUCTION 

Large computer eyatems can be constructed by joining together 
nic-'ny minicomputers — creatinp what can be called 
multi-mini-processors. The first such systems are ji'st reaching 
the point uhere p'"oblems of programming and use dominate problems of 
design and cons true i ion. This paper attempts to share some of our 
early perceptions about what these problems of programming and use 
are. It also allows us to capture a historical record of our current 

viewpc int. 

Ue are not the architects of the multiprocessors we will 
describe. Ue are not even the primary systems programmers, who create 
the operating system and operating environment within which the user 

operates. Ue are users of the system. But we are not arms-length 
users, as are the users of a typical university computation center. 
For to use such a system one must indeed create a special programming 
system on it. Thus we are, shall we say, systems exploiters. Ue 
are just coming deeply into contact with our multiprocessor. Ue 
find ourselves facing many issues of how to exploit the system and to 
program it — of how to make it yield to our will. 

First we will sketch the multiprocessors that ue are 
concerned with. There are only two of them, and we, the authors, are 
actually working on only one. Uith this as background, we will 

dipcuss seven programming issues. 

The role of minicomputers as components of mul t inrocessor 
systems is quite different Irom their cl'ssical role as laboratory 
computers. Though some of these seven issues will seem quite 
familiar to those whose world is the on-line laboratory use of 
computers, some of them wi I seem quite foreign. Hopefully, 
houever, they will paint an interesting picture of a use of 
minicomputers that will become increasingly common. 

»v This paper  was given as an invited talk at the 1974 Conference on 

the On-Line Use of Computers in Psychology. 
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nULTI PROCESSORS 

There are only two genuine multi-mini-processors, as far as 
ue know, though there may oe others in design. A multiprocessor is 
characterized not only bt, the existence of many processors, but by 
the sharing of primary memory, i.e., the processors address common 
memory. This sets them apart from networks of computers, which have 
nu ny computers, but where the intercommunication is essentially from 
secondary memory to primary memory, i.e., each computer sees all the 
other computers as peripheral devices. Multiprocessors permit a 
degree of computational intimacy not available with networks. 

c.nnP:    THE cnu nULTI-fllNI-PROCESSOR 

C.mmp is the multiprocessor at the Computer Science 
Department of Carnegie-Mellon University [Uulf, 1972]. As shown in 
Figure 1, C.mmp consists of IG PDP11 computers connected through a 
crosspoint switch to IB primary-memory ports. Each primary memory io 
2tlG words, for a total mennry of a million words. Each proressor 
still looks like a PDP11 with a 16 bit word and an address space of 
2tl5 words (actually, 2tlS bytes). In fact, a modest modification 
must be made to a processor to operate within the system. 

Each of the processors can lay its address space anywhere In 
the million words of the primary memory. It does so through an 
address relocation box (Dmap in the figure), which breaks the address 
space of the processor into eight 4,098 word pages. Thus the system 
has a small number of large pages, each of which may be independently 
relocated through Dmap. 

Each pc has its own Un'bus, the standard bus structure of the 
PDP11. On this hangs 4K of local memory as we I I as all the 
peripheral gear of disks, drums, printers, and connections to the 
external world. The last includes a connection to the PDPIB, which 
is the large general-purpose time-shared computer system in the 
Computer Science Department. As the figure shows, there is also a 
large (G0-bit 1-microsecond) clock (K.clock), which provides a common 
reference frame, and an interrupt (K.interrupt) which connects all 
processors. There is at the moment no switching between secondary 
devices and the various processors. A disk, for example, is 
permanently located with one Pc. 

Not shown in tne 'igures is the ability to partition ihe 
system, either dynamically or statically (manually), so that it 
consists of independent subsystems. Thus it is possible, for 
example, to have hardware maintenance going on at the same time that 
a user system is operating with other Pc's and Mp's. 

The system, though made up of minicomputers, constitutes a 
large computer. Taking processors to be 11/40S yields about .^ to 
.4 million instructions per second (mips) per processor, for a total 
of C to 7 mips. This compares approximste iy with an IBM 3G0/158. 
There must be some contention for memory as the number of processors 

increase,  but this is not expected to be large  (the Dmap's for the 
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ll/40s  contain a cache). 

The system has been jperational in parts for some time. The 
16x18 switch has been running since flarch, 1974. Ue currently have 
five 11/28 Pc's operational with 500K of memory. Ue do not have anu 
modified  11/40s. 

PLUR1BUS  IMP:     THE BBN MULTI-HIN!-PROCESSOR 

The second multi-mini-processor system, the PLURIBUS IMP 
[Heart. 1.973], has been developed by Bolt, Beranek and Newman to 
serve as a high speed modular IflP (interface wpssage processor) for 
the ARPA     computer  network.       Figure 2     snows   its    structure. The 
processors are Lockheed SUE minicomputers, which are IG-bit machines 
with a 15-bit word address, and which are about the speed of the 
11/20. They have a bus structure which Is similar to the DEC Unibue. 
As shown in the figure, two processors are located on each bus, each 
with 4K of local memory. Thus the figure Illustrates a 14-processor 
system, the maximum size for which the PLURIBUS IMP was designed. 
(The number was detemined by the appi icat ion, not by hardware 
limits.) The primary memories come in 8K units with two units on each 
memory bus. The switch is distibuted. unlike theC.mmp which is a 
monolithic     device. Thus,     links run    between    the    butel    of     the 
processors   and     the  buses of   the memories;   any    pattern of  access  can 
be  obtained.     As   the  figure  shows,   there  are also  I/O buses which  are 

inked   in   similar   fashion. 

An initial system has been running at BBN since mid-74. It 
has operated with a range of configurations (up to the 14 shown). A 
basic design objective was to create a modular series of IMPs, which 
could be tailored to the processing load of the network node. Though 
deliberately designed for a specific application, the hardware 
structure is quite yener a I. It poses many of the same basic issues 
we face on C.mmp, and the approaches taken on the PLURIBUS IflP offer 
interesting  contrast  points with  those   taken on C.mmp. 
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ISSUE 1: HOU TO EXPLOIT A HULTI-fliNI-PROCESSOR 

Tha first issue is simply hou to exploit a multiprocessor, 
since it is d larye systc... in terms of power, memory and bandwidth. 
It has special structural chai acteristics, which are easy enough to 
statt, but n:.t so easy to translate into performance consequences. 

Onp might 3ay there is no issue -- simply use the machine. 
But the question is rot laid to res' so easily. Different 
strategies of exploitation require that effort be spent in different 
ways, thus precluding following alternative paths with any 
efficiency. Indeed. he issue as posed manes it sound I'ke the 
multiprocessor arrived sui generis with the question of use fully 
open. That is not the case. The exploitation strategy is chosen 
before the design even begins and effects many of the structural 
features of the syst ,1. The actual situation is more like making a 
movie. Constructing ihe hardware system is .ike filming. Using it is 
like producing the movie in the editing room. The final editur is 
free to make any kind of movie he wants, but he must work with the 
film given him by the director. 

There  are 
muIt i-mini-processors. 

three  main   strategijs 
Ue take up each in turn. 

for   exploi t ing 

PROGRAn IT FOR A SPECIAL TASK 

The first btrategy is to view the mul * iprocessor as a 
specialized device created to do a specialized tjsk. Hardware ^nd 
software are to be combined optimally to perform that specialized 
task. 

This in essence is the stategy followed by the BBN group in 
designing the PLURIBUS IMP. The task existed ahead of time in a well 
defined form -- the ÄRPA Net is a functioning system with a 
minicomputer (the Honeywell S16 and 318) üS IMP, and much 
experience, both statistical and qual i t iat i ve, has beer, gained with 
the requirements for an iMP. Uhat was needed was an efficient and 
highly reliable implementation that could be scaled to the task. All 
this information existed prior to design time, and the software anr' 
hardware were designed together in apparent total harmony. 

The effects of this can be illustrated by what is surely a 
striking feature of the PLUPIBUS IMP -- it has no interrupt! There is 
no way in which an artaitarily occuring external signal can cause the 
system to attend to another task. Since the interrupt was 
introduced in the late Fifties, it has been considered as manadatory 
as I/O channels. Abandoning the int'-rrupt is an important design 
dec i s ion. 

The underlying rationale is verj single. The algorithm 
to be programmed was well understood ano existed in code form before 
the hardware design begjn. Drtai'ed analysis of the program revealed 
that it could be partitioned into segments that never take longer 
than  300 microseconds.      Since the responsiveness of the system 



fits the grain of  388 usec,  all processe* can run 
without interruption. 

to completion 

Co-equal uith the short program segments is the necessity of 
getting new tasks assigned to a processor. If this takes any 

appreciable fraction of 388 usec, then the overhead defeats the 
scheme. The BöN group developed a device called a PID (Pseudo 
Interrupt Device). This hardware device holds a set of numbers, 
corresponding to tasks, which have been given it at arbitrary 
moments. The device instantly delivers (and deletes) the highest 
number, corresponding to the highest priority task. 

Interrupts take appreciable time (e.g., for changing 
processing contexts), which is avoided by the PLURIBUS IMP, along 
with a fair amount of operating system code. In fact, the system 
does not have an operating system in any general sense of the word. 
The necessary functions are distributed carefully, such as bu .ne 
PID. 

This seems highly specialized. Indeed, that is the point. If 
viewed as a device to achieve a narrou, well-defined total task, such 
specialization is possible. Furthermore, though we know of no 

estimates of the gains made to the PLURIBUS IHP by such 
special i-.at ion, ue estimate that they are impressive. 

«^s a final footnote, the motive of soec ial i zat ion does not 
condemn the results to be equally specialized, though that must be 

the fate of most specializations. But the PID and the associated 
concept of presegmentin the code into run-to-completion steps may 
not be of such I im. f»-.. general i ty -- though .t does pose an 
interesting compiler problem. 

STANDARD USER ENVIRCNHENT 

The second strategy is to view the multiprocessor as 
providing a standard user environment, much as any other computer 
does. Thus, when completed with operating system and user facilities 
such as file systems and language processors, the system will look no 
di*ferent to the user than your local computation renter. Dnly down 
in the boiler room, so to speak. Mill (h- multiprocessor design 
become apparent. 

Indeed the two specialized flavors of multiprocessors that do 
eKJf,t in quantity are used in exactly this way. Dne is the use of 
I/O processors; the oo.er is the use of dual central processors. In 
both cases, they simpli, handle more efficiently the total set of 
tasks that has to be done for a general user shop. An interesting 
example of this is the CDC GB8B which has a large central processor 
surrounded by ten miniprocessors. Uith few exceptions '.hat we know 
of, it shows up simply looking like a very powerful general computing 
system. 

With this view the real  questions are  the economics cf 
multiple smaller processors versus the single  larger orocessor for 

_ 
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obtaming ag.ven number of  mips per dollar.   That  .5 of course 
aluaye the question n computation, but here no special.zation comes 
from specific applications. 

MULTIPLE SPECIALIZED APPLICATION SYSTEMS 

The final exploitation strategy 13 to vie« the multiprocessor 
as a system m which a numoer of spenaUzed appi-cation systems Mill 
be realized, both s .mul taneousiy and over time. Lach of the 
application systems MMI be oaapted to the structure of a 
mult.processer in order to tone as much advantage of 1t as possible. 
Ihis is the view taKen w.th C.wmp. and our discussion reflects 
essentially the cons-derates that have ansenwith respect to 
L.mmo. 

First of all. tn.s strategy leads to a general operating 
system. since severat appiication« wi 11 De runn.ng 5.multanecusly. 
tven if we env.sion sone "product ion »ode" where one application 
might dominate the system for a per,0d of t.me. throughout most of 
the life of an application äysteir one i| coding, debugging 
modifying, developing and e-pior.ng. for thif one neither needs nor 
uants the entire multiprocessor. The oper^t.nq system of C.mmp ia 

caned HYDRA Wulf. IS74:, we .,11 Macrib« MM of.ts features 
after introducing another .mportant cors-dera 1 on. 

H small address spaces »those of the Pc's) are to move 
around m targe memory spaces (tnat o* the mi I I ion-word Mp». then 
there must be a memory Mpp»ng. D.map (see F.gure 1) accompl , sh«-3 
th.s for C.mmp and BCP (see F.gure Z) ooes so *or the PubftlBUS IW 
Tne important design question .9 »ne nature o* that mapping. An 
attempt to build a genera user »yctw ec/s to making that mapping a 
general d^mand-pagmg scneme. Thus a addresses go through a 
dynam,c process of di «cover .ng whether the page is m memory and if 
not ormg.ng il into MMTy. translating the processor address mtc 
the physical address in tne memory. Thus has evolved the general 
virtual mach me concept in mociern computing. 

P DiQ1ic
C,?mn d0eb n0t hdVe ä ^"'^a-Pag'ng scheme (nor does the 

^UHlBUS IMP) One reason ar.ses frpn.the strategic view under 
discussion. Paging ichOMl ore e^pens^ve I in t.me). more so than 
sunple relocation schemes. Thus, to not a paging scheme in the 
hardware if to agree to mane every üSer pay tr s cost. At this pomt 

one has eliminated some of tne important possibilities fo- 
adaptation. For not only the cost gees up. bet everyone will üe 
subject to the same pag.ng system with itl particular cost profile, 
whether it fits the neeos of their particular system or not. 

Thus what we find m C.mmp 11 aso-cailed "'arge page" 
scheme. in which there are only eight pa-jes. earh large enough to 
hold a substantial subsystem UK words'. Tne use of th.s page system 
is then left to the user. There is a -.ost. tor insofar as paging is 
necessary, it must he detected and tKOCutod by software. But in 
return, we obtain the possibility of fitting the paging system to the 
application system. That ia. insofar as pages can be left in place we 



Figure 3: HYDRA System Orgonizotion 
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pay minimal   addressing overhead. 
10. 

HVDRA;   The    C.niirp flppr^t i»,-.    Sustpm       I.« 

strategy. One     can Z    ILn   ■ * strongly    reflect     this 
sho.n   |X    Figure 3 W^        .        ?Ve^a,l     SyStem    ^Qanization. 
bottom part of the'Hgure Th s 1^ 1° the System' sho- '" the 
cannot I delegated T^teTs" ^ "X^TlT* ^ 
security    of   the resources   in    the astern      ThL    c      ^'r'0"    and 

Kerne, "S, , ipr%« ^g' ys . A" "a^H J" L" ind,Cal0d b« 
»anage the s-t of pages in cor. iSs" and. b« th0, Presses that 

an« an  inte,-pnoc,s: S^l^'^t« A*"" '^ 9ü9,e"  "/0)' 

«I,.- ;ohnc^te::,lou8.odi::!^,hi6h-i"e; ra,in9 ,^™- 
associated    Hlthlt    « nni  .,. «^   ,        .• Pol icy-system      has 

policu-austem      n  .h ! US,e"'   he malJ reclue" a Particular 

epeci?ir*:, o" \XA ^r^r^jrb8 '•"^ - - 

several   places     tNe"eM     19731 n ^l".! ^    >'e'"9 """«'■"a««« at 

« are pursuing   it^pe^'tlg e?-'^^:'In^i tip.^™ r 

HEARSAY^    Lesser     ^TT3      StrurUre 0f     this    s^™'     "I led 

There.,    a central ling    process    that Matches    the ac'vitg    of    "; 
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various knowledge sources    and uses  the collectively lighted guesses 
to  eventually understand an utterance. J y » 

The HEARSAY structure lends itself to a direct decomposition 
nto parallel processes to take edvantage of a multiprocessor 

architecture. Each knowledge source can be a seperate process and in 
many cases mul t iple copies of a given knowledge source can be used. 
Having aeveraI sources of knowledge simuItaneousIy working yields 
sigmf.cant improvements in the time it takes to recognize an 
utterance. This is particularly important since the ultimate goal of 
such systems is to recognize speech in real time. The HEARSAY 
structure thus allows for effective use of a closely coupled 
multiprocessor where a large common data base can be easily accessed 
by a   large collection of processe&. 

Ina large system like HEARSAY, it maybe necessary for 
special scheduling algorithms or paging strategies to be employed. 
For example t^e initial operating system built on top of HYDRA does 
not provide for priority classes in scheduling. The large collection 
of  processes  the make up  the    HEARSAY system may very well   need  to be 

is,0th^ Svnp^V0 0bM ^    the deSired effeCts-     The   Wtant  point 
^♦h    !K t   ?0eS all0W  f0r    an0ther 0Pe^ting    system  to co-exist 

MFI^AV ?   '^ ^  that    m08t U6er3    wil1  use- Thu8.   "e expect 
HYDRA P ^ U9e   it9 0Wn operatin9    9y3tem buil* on  top of 

12. 

no 

CONCLUSION - STRATEGIES 

It is important to realize that of these choices, 
part.cu ar one is "right". Each i s an attempt to maximize the 
payoff for specific, but different, goals. The first choice, that 

taken by the PLURIBUS IflP. attempts to maximize the ef f icien^y and 
reliability for a specific task. Uith the second choice, that of 
building a general computing environment, one is trying tc find the 
most efficient way to construct a certain environment. If 
multiprocessors can compete for that environment. they can be an 

implementation of choice and mul t iprccessers shou!d be designed to 
meet that demand. The third choice, that taken by C.mmp. attempts to 
gam the advantages of specialization but over an unknown range of 
application systems. It must necessarily trade off some 

possibilities of specialization against a system that can handle 
several such applications simultaneously. Similarly. it must trade 
off the best scheme for general computing in order to permit 
adaptations to occur. 

Nor are the choices mutually exclusive in the sense that if 
you choose X you are precluded from the same appl-cat ions that choice 
Y permits. Speech systems will be brought up on general purpose 
systems. (We are creating a version of HEARSAY-2 on our PDP18.) Ue 
will be creating a general user environment on C.mmp. which will run 
simultaneously with our work in speech. And we would certainlu not be 
surprised to see the PLURIBUS IHP used for other applications quite 
remote from the message processing task. 



a     givenXstei" V^^ doe8 bias   ^ application potential   of  '^ 



ISSUE 2. HOU TO GET ALL THE SOFTWARE 

The second major issue is how to obtain all the software that 
is needed for such a system. By now we are all aware that it takes 
an immense amount of software to maks a computer system livable. In 
practice such software only arises with the develcpment of a large 
and active user community, plus the continued efforts of the 
manufacturer over several years. No general preaching on this fact 
should be necessary in a minicomputer user community where new 
systems arrive from the manufacturer rather bare, despite advertizina 
claims. 

14. 

The multi-mini-processors are composed from «Kitting minis 
(C.mmp from an extensively used sustem. the PDPll; PLURIBUS IMP from 
a new machine, the Lockheed SUE) and programs exist for these minis 
as stand-alone systems (many for the PDPll. fewer for the SUE). Yet 
these do not go very far toward satisfying the need. First, all such 
syatems must be reconditioned to work in a multiprocessor 
environment. To do this in a way that exploits the multiprocessing 
is a genuine system-programming problem. But further, these 
multiprocessors are big systems with big memories and they can use 
software systems commensurate with that power. All this adds up to a 
major problem. 

There are several approaches tn obtaining the software. Even 
more than with the strategy of exploitation. these are nc i mutually 
exclusive. In fact they form an „matorium and all should be used 
(and pretty much are on C.mmp). 

CODE IT IN ASSEHBLY LANGUAGE 

The first approach is to use the minimal tools provided by 
the manufacturer. BBN has implemented the PLURIBUS IMP in this way. 
A simple assembler was used for all programming. A straight-forward 
loader was used to transfer code to the machine. And finally, a 
relatively simple debugging system was used. The debugging system 

had no multiple-process capabilities. 1 f the amount of software 
that must be produced is small, this 
approach. 

is certainly the quickest 

CODE IT IN A HIGH LEVEL LANGUAGE 

The main approach used by the implementers of HYDRA for C.mmp 
was fhe use of a high level language -- BLISS (Uulf. 1971]. BLISS is 
an ALGOL-! ike system implementation lanciuage which is available for 
both the POP!2 and the PDPll. It haa an optimizing compiler that 
produces object code which in some cases is better (more efficient) 
than code produced by a system programmer using assembly language. 
For larger software systems, it is desirable to use a high level 
language. Such a language usually a II owe for much greater programmer 
productivity and for systems that are much easier to assimilate and 
maintain. In conjunction with the high level language, one generally 
finds more elaborate relocating loaders and deougging packages.   The 



BUSS  debugging  package,     called SIX17    .n 15 

of     multiple    processes and     f^'   al l0WS   for  syn,bo1 'c  debugging 
debugging. '       and     for     sour«     language    routine     level 

on-g is ^•oiMII^Ä runnlnr^T"58 0f thiS ^^ ^ 
Mhich shOW the productfvty 0^^^^ Z^' T meas—ts 
good.     both   in   terms    of  number  oL i  software  team     to be  very 

--month and   in  terms of  ^L^rB^SS^Ie^ts8.^" ^^ -' 

COUPLE  TO LARGE COnPLETE MACHINE 

th. "fwed::rop:::recansri"rto t\^"-*^.-hot 
^cilities of the large computer cro"!US,T/he COn^^ user 
e aborate linking lo.^. TyM^.S^Br ^ •'"r' Cro99-co'"P;'-s. 
all be .mpiemented and u.ed mo e eas u ^n 2 .'^ ^'^ PaCkage9 can 

»«nl. The HYORA developmenT ^H!    y      /    arye comPuter   than on a 
"ith    a P0P18  that     ts connected    ?o c'l      "'rf'   theSe caPa^"tie5 

greatly    8 impi i f ies  the    prob em    of       ?* ThUS    a   ' ^9« computer 
specially  true   in  the eaMu n^'   V    *oUuare development.     This     is 

under  deve^opment^o^hT^abt6?  the *"*"" ^   i9  8ti(l 

some    ofBthet:o^::ayr:0caTibldeSrala
or

COUP,eHd   ^ ^^   is   that 
existing  systems    on   the   large c.puJer     To'r ^^^  ^ "•«"« 
advantage of   the  file  system on    IK-   i 'Stance,   o.ne can   take 

the    multi-mini. I f   the    .u U i   ^ n    T COmPUter   in   ' ieu of  one  °n 
could  be   transferred betueen  thP     ? a 90 **' *     file  SV*{™'   '^s 

•arge  computer  become^ re    d re^t  ^cct^M   Tl*"" ^   in   the 

another  example.     there are    nn        y fccessible  to  the multi-mini.   As 
compiler   on    C.:mPuLa^a

n
B

0
LI'

mmed,at^,ans     to crea^     a    BLISS 

be   stable and efHelen        Ultima eL'^ 0n  the PDP10 a^ears   to 
compilers     to a mul t i process mo PH!''   ^ "i^   t0  e><P,0re how   to  adapt 

GOOD-KERNEL HYPOTHESIS 

the    k.r^1^^^»"^   ^yPothes.s     that   if on. build. 

operating   system     fac^M ^^ f^ COr:eCt'^      ^    "**r     level 

easier   to   implement.   To L'e extent    SyDRA'^.r09^"19    beCOme    much 

hypothesis. If   the    HYRRA    . ■ '5   the   f,rst   test   tor   thli 
tacilities.     buMding opera t inn  r?      ^     theright     Set     of     ^ i 
simple     compare  TbuMd na    ?he

üfflS    0nto*0<<<     should be  very 
machine. « OUMdmfl     the  same operat mg  systems    on   the  bare 

The     impiemertation of     a   fila  mumtmm 
phenomonon.     HVORA't Global  q.-*«i   T     ,   y 'S  an     e><ampleof   this 
directory     structure a    ow      one     t       II-'? COn>'J"C«°" ""*  *  simple 
«-Pie  objects.      In  order     0 b7nd    a  ^   '^-^  P-manant     storage     o, 

-■■•Ply     needs   to define    a ne. ob'ect     clnlä     'rT''     ^   thiS*   0ne 

the  representation of   the     file       TK-'H ! *   '   Uh,ch contains 
tile.     The  ri.rected  graph  structure  of   the 
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«achine   is  a verg  tine consuming project 9truct-« <-    the    bare 

INTERACTIVE SYMBOLIC  IMPLEriENTATION SYSTEM 

provides^ta.Z'tl'fn t0 ^ "W""**"™    syste.  that 
app. Nation*0: steTnt^^r^r10 ^ ^ ^ bUild ^ 
such a sy3ten,. called U [Ne^e I' 197?] T been ^^'^ting „Ith 
5  illustrates the Kinds of f ac 1 i i e ' t °t SeVSra,.rr8-   FigUre 
user. The system has a kPrL\    i    J tnat are ava. lable  to an U 

initial  languages which are^HT  yP   ,t al80 P1"^"'des three 
facilities (e.g  edi rrs d.h       construct a large set of user 

matures of l^^] S*^^*''  a99emb,erK ^ "^ 
1) on n^3 t0tal  environ,nent so that one need not relu 

on other systems to produce the required software 
2) Lit   is complete I u accessihlo t« ^     »wriware. 

and aria«* ♦ u-  acce98,ble to the user to modify and adapt to his own needs. W 

^^«^«^.r^rin " : a Si'5,e■ like -'e-c.ive LISP, 
programing faatur's.     '   '""^"''"g ex.ramely basic ^.tm 

137« iw^r W«T T^r;u::: L"(
on c.».Pduri„gApri,, 

betueen  one     and     tbr.sl    ,a. " .u    ^    °      Pr(!9rä«»ers     (varuing 

pre-pnooesson .ba.'^lo TL9 o",' ^'T.:; ^^ ' «f^ 
analyzer,      sample   the  data      ,= !     . real-time audio  spectrum 

segments: the ' esuU to be Zl* ' ,nt0 Ph?nemeS• and '^ the 

display processor (see F inure GTH^ rea|-timeon • Q^phics 
graphically     i I lus rate    ho L    i*     The demonstration was   intended   to 

to  the mu.tip^ceslor^ylte.8^"^ ^    ^ Pr0Ce980r9 ™  ^d 

run   the    U  TyZ^llTü^Lr ^     "*   initia,,y Wanted   <° 
not   yet     ready   for  end user«    Ü. T-    Unable  t0 beCause HYDRA  "•■ 
for  C.mmp    and w^thm  that  !'   ♦     C°ns ructed    a stand-alone U system 

designed" an Inü? ^XS^Tu iU ^sT^ r?05^^ Ue 

segmenter. and labeler could be Ittten i! B.ISS U^ 'T ^^^ 
specialized multiorocessinn e e

gr tten ,n BL'SS. Ue also built a 

characteristic tha?tu^9 . ?y em Uh,Ch had the ^usual 
end  result   o     the e^ilnt^.        i     I "-i t iprogramming  system.      The 
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CONCLUSION - SOFTUARE PRODUCTION 

AM the various approache9 to producing requisite software on 
a mult.-mm.-processor are important. For each approach there is a 
set of software tasks where it is better than any of the other 
approaches. t . thus important that the multi-mini environment be 
rich enough to allow the use of any or all of these approaches. 



ISSUE 3: SMALL-ADDRESS PRDBLEfl 20' 

M^y [^.^j.^r irrtN tan :re rantage of the •— 
«ini.     On C.mmp.     f,-   instance      PJH P ySICa,   addre93     SPace  of   • 
only 32K uorda While  the pS. IT 0rocesso'-    'f d"-ectly address 

«•ill ion  Mords. Anuone ühn  J    !    ^ Capac,ty 0'   ,h<'  Wt.   is  one 

is   forced     to .aRe      eHous des"      d ° ^^ Pr0gra'9 ^  than ™ 
•ffort.     Furth5rmore/s nee    t':90!. ^ ab0Ut     h,5     P^mming 
applications „t,,  be a    racted    0    h"9!   .T^  i9    a'      ■ab'e-     '^je 
occur     frequently.     A    ar^e    nulL     . "n"ni   and   the Prob,em -'' 
-d     attested.   %or: a',   T^M^^'T    ha- ^n  suggested 
solutions     that    uorK      .ell. H^e" eT' ^^'T*     ^    ^ 
programming     system,   all   the    solut innc  .!     •. a     ,a^ge•     dtfn*«'C 
either  restrictive or   costly  in o^head "^ "  ^     ^  t0 be 

STATIC OVERLAYS 

overlay pTa^r9uBinTr^o9LU;S0,Uti0n    t0th,S    P^'-has    ^n     to 

t^ -a?est\Vsrn9oe:c ;hon
u;:

9;h
9::r9 ,Dm:p on^mpKHVDRA•% 

always be in the same olarp tn ^ soiut.on. The overlays must 

overlays conta(n\^da
P "a ^^f^55 ^r**"™' M the 

translation problem. Houe er „" t? ^^^ ^ ,S n0 artdress 
data  which  conta,ns many^ „ r     ^    ZZ^  ^^  haVe 

However,    there  are  case«!     i« I * —•   • 
systems  uhere     code   in an over lau attel^  /"  SOn,e   lar9e P^amming 
another     overlay uhich    mustreslty' ^T data ^  "^   - 
Static  overlays    prevent     thilT ^e physical   addresses. 
Problem  uith     this      option    si Z"^ COrre^- ^    other 
relocation     registers LarcP,     T    0Verhead   ,ncurred     in     changing 
relocation  r^?,^* rJ^JT^J^    are   '^'U  to    uant   to change 

frequently,   thus mak.ng   the overhead critical. 

POSITION  INDEPENDENT OVERLAYS 

overlays^h^onulnl00^1"1^ t0 the ^-^-one is to use 
you   from    KI r^rfcH^ «    !?  '^pendent  code and data.     Thl. fr^ 

PHysical    IC^. ^ t.0lr:n,
Dr^

nfl
i^ 0Ver,ay   'nt0  the  sa- 

Position independent code' ^ t e d'to" Jh:S S0,Ut,0n iS that 

-»ore slouly. and be harder to produce Th^ J? t ' SPaCe' eKeCUte 

underlying  processor   In   the Su   m[n\   .Mn ^ aS5Ume5   that   the 

Position   independent  code   ieT^s'Z pHw.'"  "*•""**   '««  cost 

SOFTUIARE DEMAND-PAGING 

demand-paging. TMs   invli wO!
0lUt l0n-      iS       t0      Provi-e       software 

9 mil   mvolves accessmg data    with  "fat  addresses". 



e.g., 32 bits of effective address that determine a page and an 
offset uithin that page. It also involves making any code that 
crosses page boundaries go through both demand-paging and address 
translation. Ue tried this solution in an early version of L*. This 
solution takes more space and has some position independent code 
which is harder to produce. It also suffers from severe overheads for 
the demand-paging and address translation. Its great virtue is that 
it provides a truely general system; one where the entire large 
memory is directly addressable. 

MIXED SOLUTIONS 

The most promising approach appears to involve mixing several 
of the previous solutions. There are two basic ways to do this. One 
method would start with a software demand-paging system (fat 
addresses) and allow for some pages to be specialized (i.e., have 
small addresses for efficiency). The other method would start with a 

static overlay structure and build up mechanisms to allow for 
arbitrary virtual addresses (pseudo-fat addresses). Ue are currently 
working with the latter of these methods. Ue have constructed the 
latest LVf system with a simple static ovsrlay stn -ture. Ue are now 

in the process of designing the mechanises necetsary for certain 
facilities (e.g., compiler) to be able to access arbitrary virtual 
addresses. The main problem now is to determine whether a large 
application system like HEARSAY-2 can be decomposed into small 
overlays that don't need direct access to each other except on rare 
occasions. It remains to be seen whether this solution is adequate 
for large systems. 

21, 
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ISSUE 4: PROTECTION 

The forth major issue is protection. The style and amount of 
protection in a multi mini operating system depends greatly on uhich 
strategy is chosen for exploiting the multi-mini. 

NO PROTECTjON 

The PLURId'JS IMP represents one end of the spectrum. The 
decision to bui Id a specialized systerr for a specialized mult -mini 
led BBN to provide no protection at all. The assumption here ii 
that there is only one application system running and it was built by 
a small, closely-knit programming group. Every module in the system 
must be aware of other modules and their conventions so that they 
don't get in each others way. There is aiso ar, assumption that the 
system is small enough to be easily debugged. A module witn a bug 
toi Id accidental ly destroy another module. If there are too many 
nodules (or they are too complex), it may be very difficult to find 
the incorrect module. This solution generally works well only for 
small and well understood applications. 

AUTHORITY-BASED PROTECTION 

At the other end of tne spectrum, the decision to allow many 
(unknown) applicationa to run, with program development occurring 
simultaneously, lea-Js to great roncerr, with protection, both oet^een 
users and between various processes being run by one user. 
Protection can be viewed as a central issue of operating systems, 
i.e., the control of resources, the distribution of the right:-, to use 
these resources to various processes on a moment-to-moment basis, and 
the guaranteeing of these rights. Host of the first and second 
generation operating systems, such as the existing DEC systems 

(TORSTEN and TENEX) and the IBM 0S3Ge. are so-called authority-based 
systems. In these systems, protection is associated with the data 
and not with the processes accessing the data. This tends toward 
crude categorization of protection (e.g., the familiar 
read/write/read-write distinction). There are currently no 
multi-mini systems that use authority-based protection, although it 
is clearly the alternative that would have been used a few years ago. 

CAPABILITY-BASED PROTECTION 

HYDRA is a capability-based system, which means that it 
associates rights to use resources with individual processes and not 
with individual data. Capability bystems permit much finer 
distribution of rights. essent i a lly on ar b i trary processes. Uie are 
only just beginning to see capability-based operat.ng r-jstems. and 
this aspect of HYDRA represents an independent research effort. 

HYDRA has an abstract view of the entities that can be 
protected and the rights to manipulate these entities. Because of 
th's»  '*   'S possible  to build  higher  leve.  p-otection  into 



specialized subsystems. This is another aspect of the HYDRA design 

that reflects the basic exploitation strategy of multiple specialized 
application systems. 

There is a subtle disadvantage tilth capability-based systems 
that we are learning the hard uay. You general ly must do much 
plannmg m a session to insure that you Mill have al I of the 
rapab.l.t.es you need. If your program has a strange bug and you 
den t have the proper -ights or capabilities, you may not be »bit to 
explore the bug. At this point, ue lack the experience with HYDRA to 
kne jhetner the advantages of such a protection sustem outweigh the 
di sadvantagys or not. 

23, 

Generally, there is a computing cost associated with 
protection and the more protection, the higher the cost. This leads 
the user of an over-protected systerr to find ways of avoiding the 
protection mechanisms. However, with an under-protected system, the 
user tends to lose much wor«^ when something that belongs to him is 
destroyed by someone else. He also tends to lose time trying to 
d-bug complex systems when the various parts of the systems are not 
protected from each other. Finding the correct balance of protection 
is both .mportant and difficult, and we expect this issue to become 
more visible at Z.mmp  gets more and more ust. 



24. 

ISSUE 5:   Tlflt-CONSTANT PROBLEM 

Thp fifth major issue has to do with the time constants for 
basic fun-fions that must be performed on any mul t i-mini-processor. 
This is actually a class of problems, one for edch app.ication system 
against the pattern of bab c time constants. For this reason we 
cannot enumerate general alternatives, but must select illustrative 
issues that arise for particular examples. The important point is 
that the time constants have an immense influence on programming 
style   and  system design. 

Consider two basic ways of bui Iding a large programming 
system: 1) have one process that has many overlays and does a great 
deal of relocation register changing; or 2) have many small processes 
that communicate with inter-process communication and don't ever 
change   relocation registers. In HYDRA,   relocation register   changes 
are about an order of magnitude faster than inter-process 
communication, so the correct choice is the first way. Functionally, 
many intercommunicating procenses way be the preferred way to 
organize the system, but the time constants preclude it. The time 
constants may have more impact on design decisions than the 
functional   characteristics of   the operating system. 

Another example of this problem has to do with prevention of 
deadlocks,   a    pervasive problem   in all   ivul t iprocessor  systems. The 
HEARSAY system wishes to have a large data base shared between many 
processes. In order to prevent a process from having the data it is 
working with changed by another process, semaphores are used to build 
lucking structures drouno relatively small pieces of code. 
(Semaphores are a standö-d device to avoid interference between 
processes; they are flags that indicate whether an object, e.g., a 
piece of code or a piece of data, is in use by another process.) The 
problem is that the operations on semaphores that HYD M provides are 
much too slow relative to the frequency of use and size of code they 
are locking. Because of the time constant, we had to build another 
level of semaphore that would only make use of the HYDRA semaphore on 
rare occasions. This is an example of a functional capability that 
could  not  be used because of   the  time constant problem. 

Another place where the time constants become critical is in 
real-t;me  application;. The    basic     functions  like    context     swap, 
relocetion register change, inter-process comnunication, and 
interrupt handlinj take r.iuch more real time on a mini than on a large 
computer. The difference can be attributed +0 »he differences in the 
raw processing power and in the complexity of instruction sets. When 
these differences are taken into account, the relative overhead on a 
mini and a large computer are about the same. However, the real-time 
overhee-' becomes critical when doing real-time computation, or when 
minimizing  terminal  response  time. 

The time-constant problem thur conies down to understanding 
the time cont ^nts and their relationships with respect to a given 
application    system. This      understanding    is    necessary     if     the 
application    system  is  to    make effective use of    the multi-mini.   The 
problem  exists   in all   computer     systems,   of course. But   it   is  much 
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more critical in systems with highly flexiole and general operating 
systems (such as HYDRA). Such operating systems provide functional 
capaoil.ties of great power and elegance, but the time constants 
often deny their use. The situation is especially critical in 
multiprocessors where exploi tat ion of the system requires working 
with many processors in some coordinated scheme. This can only be 
done by working through the operating system. It is almost impossible 
in a multiprocessor to avoid the time-constant problem by withdrawing 
to  your  own world  to avoid  interaction with  the operating system. 

1 

J 
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ISSUE 6: RELIABILITY 

The sixth major issue is total system reliability. 
Nul t i-mini-processors are cor-plex, and much can go wrong in both 
hardware and software. Also, the hardware that provides for 
multiprocessing provides redundency, which if enoloited can permit 
more flexibility in recovering from haruware failures. Because of 
these factors, reliability plays an important role in all 
multi-minis. There a; e several known approaches to the 
rel iabi I i ty proble:n. 

CRASH AND DUMP 

The most common approach in existing large computer operating 
systems is to bring the system to a grinding halt when a failure is 
detected. The system is usually dumped at this point so that system 
maintainers can try to determine what caused the failure. Then a 
fresh copy of the system la brought up. The obvious flaw with this 
strategy is that all users lose their current run, even if the 
failure would not have otherwise affected them. This approach is 
slowly disappearing as more experience is gained with smooth recovery 
from failures. 

AHPUTATION AND EXTERNAL BACKUP 

The PLURIBUS IMP stresses reliability as its most important 
attribute. Their system is highly modular and redundant. Every 
structure in hardware and software is isolated and duplicated. The 
system makes periodic validity checks and amputates any structure 
that appears suspicious. If the amputation causes some data to be 
lost, an external backup provides the data to be dealt with again. 
The interaction between an IMP and the ARPA Net involves much 
handshaking. When data is accepted by an IflP, it acknowledges the 
reception. If no ackr ^i »dgement is received within a certain time 
frame, the data is sent ar'-n. In this way, data is distributed 
across all IMPs in the network. Thus, the specialized nature of the 
application, in this case the ARPA Net, provides an external backup 
for lost data, no matter what the cause for the loss. This permits 
good solutions to the local reliability problem. 

The reliability of the PLURIBUS IHP is so high that  the 
first  time the system uias ever brought up they discovered that the 
only way to stop it was to pull the plug on the whole system. Since 
then, their system has grown to be one of the most reliable known to 
us. 

RECOVERY BY RECONSTRUCTION 

The    nature    of    reliability on    C.mmp    and    HYDRA     is    quite 
on different   but     still     very     important.     The    stress     in HYDRA     is 

recovery  after  a  failure has    been detected.     C.mmp does not  have   the 
kind of  backup  that PLURIBUS  IMP has with  the ARPA Net.   The method   in 

- 



HYDRA is to ma.nta.n a global symbol  table (GST)  which contains 
mformat.on about „ery structure  in  the system.   The GST  ?8 
ma.ntamed so  that any destroyed structured can be recreated 
mcludmg parts of  the GST.  To detect fai lures.  .he hardware h« 
been  n10d)f d ^ do parity checking and ^    ^^    ^nta^ns 
checksums of all cr.t.cal structures. In addition, whenever an error 
n detected wh.le running a user system, the error information is 
pcssed back tr that system. Thus, the end user can build reMab e 
aophcat.on system.. HYDRA's reliability is still under research and 
• ts success has not been fully determined. 

PARTITIONED SYSTEMS 

n.rf .- An?1!
her aSPeCt of^e,ability inC.mmp is the ability to 

part .t.on the system into several smaller systems. This allows 
concurrent system development. general user facility use. and 
hardware  maintance and development.  The PLURIBUS IMP can also be 

rnn ^1?^: ^V 0nly by recabling- The C. mmp par t i t i on i ng i* 
control ed by sw.tches and is changed on very short notice (a couple 
of mmutes). Th, s ability is being used on a day-to-day basis to aid 
!• selecting a stable configuration of C.mmp. Ue also use it 
rrequently to allow several groups to work independently. 

27. 
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ISSUE 7:  PERFORMANCE EVALUATION 

The last major issue is how to analyze and evaluate the 
performance of running systems on a mu! t i-mini-processor. This issue 
is perhaps the least understood of all of the issues. Programmers are 
notoriously wrong in guessing what their programs are actually doing 
and where the time is really going, There is reason to believe that 
on a multi-mini, the problem is going to be Mich, much worse. The 
decomposition of algorithms to take advantage of parallel processing 
is currently a rich research field. Imagine how difficult it will be 
to determine the dynamic characteristics of several cooperating 
para I lei  processes. 

Iradi t ional ly, the analysis of performance of a computer 
system or a program is undertaken as a study. Often this study is 
primarily of academic irterest, though sometimes with a view to 
balancing the computer system or making the algorithms run more 
efficiently. However, we believe that for multiprocesscrs there will 
be a major shift in emphasis of performance evaluation from analysis 
tools to operational tools. They wi I I become as important to a 
multiprocessor  user as  the  traditional  debugging tools. 

The solution to the problem on C.mmp has been to start a 
research project on a hardware device, called a hardware monitor 
[Fuller, 1973], which will allow us to measure spncified kinds of 
activity on one processor's bus. This device, used in close 
conjunction with software in HYDRA, should give the user a chance of 
obtaining the dynamic job statistics he needs to analyze the 
performance of his programs. Ue also hope to use the device to help 
understand the real performance characteristics of HYDRA in order to 
improve system  performance. 

An example within HYDRA illustrates the uce of the hardware 
monitor. Ue have a real-time device that connects C.mmp to the PDP10. 
Ue recently discovered that characters we-e occasionally being lost, 
presumably because HYDRA was running blind to interrupts for too 
long. Ue were able to verify this with an oscilloscope. However, 
we have not been able to find the code in HYDRA responsible for the 
excess blind time. Ue expect ^he hardware monitor to be able to 
isolate the offendinci code. The important point is that a multi-mini 
is so complex that net: techniques must be developed to aid in 
performance  evaluation. 

-aB___^aaHaaai   
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CONCLUSION 

Though other   programming     issues  could be  discussed, 
all   anyone  should be called upon to remember.    Let  us sum up. 

.even 

Ue believe that multi-mini-processors such as C.mmp and 
PLURi3US IMP 'jill come to provide a substantial amount of 
computational     power. Although  the    technical     capability     for 
creating multiprocessors has existed for quite awhile, only with the 
development of the minicomputer (and now the microprocessor) has thp 
cost-benefit structure pointed to multiprocessors as an important 
technical      solution. As a    result  we  know almost     nothing at   this, 
point about the actual programming and use of genuine 
multiprocessors, i.e., those where the multiprocessor st-ucture is 
sufficiently general and available to affect the structure of 
application  systems. 

Several of the issues we have discussed in our list, e.g.. 
how to get all the software, protection, reliability, and performance 
analysis, are well recognized problems and are subject to intensive 
independent research. The work with multiprocessors gives them a new 
twist, however, raising to consciousness aspects that are of little 
interest in other kinds of systems. Though still speculation on our 
part, performance analysis as a real-time dynamic debugging tool 
represents  a  new world. 

Two   items    on our     list,   the     smal I-aadress pr'.olem    and     the 
time-constant   problem,   do not    represent   areas   that are well   explored 
in     computer   science.       Ue have  seen    no  solutions to  the underlying 
programming issues in the literature. Both items seem critical and 
worthy of   considerable attention. 

The small-address problem seems inherent in mulitprocessors 
built with mini- or micro-computers. Possibly the problem will be 
solved by avoiding it. Some new minis are appearing on the market now 
with large physical address spaces but maintaining the other 
attributes of a mini. However, a large s^ ess requires many bits, 
both   in     memory   to retain   it  and   in    bandwi.   ,1  to  communicate   it. 

Ue might point out to psychologists that the problem is in 
essence   faced  by a population of   inte. communicating humans. No  one 
has internal symbols (i.e., addresses) designating all the things 
that all individuals designate internally. That is. they do without 
large  addresses   in   the    hardware. Instead  they use   language,   which 
is a set of software-maintained large addresses. for their 
intercommunication. Ttey continue to think their private thoughts in 
separate representational worlds. Thus the problem of communicating 
with small addresses is a fundamental one not restricted to the world 
of  multi-mini-processors. 

The time-constant problem seems critical if we are to make 
effective     use      of     multiprocessor      architectures. Ue      must 
understand what various patterns of relative and absolute time 
constants imply for the processing systems built on top of them. Only 
then can     we     design multiprocessors    with    a balance    between     their 

„^___ 



uith'uh?^ "Pabilitie9 and the -Wnile capabilities (i.e.. the spe.d 
with uh,ch they carry out various functions). What can be done uithin 

ov r^:^'^ ^L31-^.^ desi9ned is .till puite uncled  sL 
OthPr!     I    '  9uappin9 U**'     are built  into  the harduar*. 

betL; n"?bM T0^10"'  ^ ^ SUbJeCt  t0 in*"l~« trade-o"; between flex.b.hty ano computmg cost (for checking protection)  For 

h t'a^tnir ^rVV0^"1"9 0Ut re9tricted P-tection s he^e so that a mm.mum of check.ng has to be done dynamically. 

UP h-w- ^ ^ attempted t0 e><Pose a set of programming issues that 
ue have encountered In beginning to use a multi-mini-processor.    He 

sau no h0"  U?<amentäl '^^ ^ the correct formulations - to 
say nothmg of the correct solutions - for most of these problems In 

Lr?rt e^v:,:onment•Perhap9 the9e wi,| ** longer ij *£ %£ 
mportant problems after .e obtain more experience   That experience 
•s now envelop.ng us day after day. per.ence 
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